Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties
نویسندگان
چکیده
Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.
منابع مشابه
Climate response of direct radiative forcing of anthropogenic black carbon
[1] The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be external...
متن کاملSimulated Global-Mean Sea Level Changes over the Last Half-Millennium
Simulations of the last 500 yr carried out using the Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3) with anthropogenic and natural (solar and volcanic) forcings have been analyzed. Globalmean surface temperature change during the twentieth century is well reproduced. Simulated contributions to global-mean sea level rise during recent decades due to thermal expansion (the largest term...
متن کاملDiversity of Plants and Animals in Mountain Ecosystems in Tajikistan
Tajikistan is a hotspot of plant and animal species diversity and endemism andis important for the conservation of biodiversity on a global scale. The country is located ata biological crossroads. Species from Central and Northern Europe, Central Asia, theMiddle East, and North Africa mingle here with endemics found nowhere else. Therichness of Tajikistan‘s biodiversity shows up at the genetic,...
متن کاملApplication of remote sensing data in measuring the area of the Zardkuh glaciers
Glaciers influenced by climatic factors and therefore as an important indicator in the study of climate change are studied. Although morphometric analyzes of glaciers based on the analysis of optical satellite data can provide an opportunity to measure ice outcrops, but the identification and determination of the buried glaciers underneath the glacial debris and, consequently, the determination...
متن کاملEquilibrium-Line Altitudes of Late Quaternary Glaciers in the Zardkuh Mountain, Iran
Equilibrium-line altitudes (ELAs) of former glaciers in the Zardkuh Mountain of the Zagros Mountain Range were reconstructed from glacial-geologic data on former ice limits by using various methods. In the study area various types of glacial landforms such as outwash fans, moraines and well developed glacial cirques are observed. The results suggest that ELA were depressed 1433 m below to prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016